On the Extension of the Erdös–mordell Type Inequalities

نویسندگان

  • B. MALEŠEVIĆ
  • M. PETROVIĆ
  • M. OBRADOVIĆ
  • B. POPKONSTANTINOVIĆ
چکیده

We discuss the extension of inequality RA c a rb + b a rc to the plane of triangle ABC . Based on the obtained extension, in regard to all three vertices of the triangle, we get the extension of Erdös-Mordell inequality, and some inequalities of Erdös-Mordell type. Mathematics subject classification (2010): 51M16, 51M04, 14H50.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reverse Inequalities of Erdös–mordell Type

This paper deals with the reverse inequalities of Erdös-Mordell type. Our result contains as special case the following reverse Erdös-Mordell inequality: R1 +R2 +R3 < √ 2 (ρ1 +ρ2 +ρ3) , where Ri and ρi (i=1, 2, 3) denote respectively the distances from an interior point Q of A1A2A3 to the vertexes A1, A2, A3 and to the circumcenters of A2QA3 , A3QA1 , A1QA2 . Some other closely related inequali...

متن کامل

A New Sharpening of the Erdös-mordell Inequality and Related Inequalities

The famous Erdös-Mordell inequality in geometric inequalities states the following: Let P be an interior point of a triangle ABC. Let R1, R2, R3 be the distances from P to the vertices A,B,C, and let r1, r2, r3 be the distance from P to the sides BC,CA,AB, respectively. Then R1 +R2 +R3 ≥ 2(r1 + r2 + r3), (1.1) with equality if and only if △ABC is equilateral and P is its center. This equality w...

متن کامل

Erdős-Mordell-Type Inequalities in a Triangle

with equality if and only if the triangle is equilateral and P is its center. This inequality was conjectured by Erdős [1] and proved by Mordell and Barrow [2]. Oppenheim [3] established a number of additional inequalities relating the six distances p, q, r , x , y, and z. Such an inequality will be referred to as an Erdős-Mordell-type inequality. A survey of some of these inequalities can be f...

متن کامل

The Lehmer Inequality and the Mordell-weil Theorem for Drinfeld Modules

In this paper we prove several Lehmer type inequalities for Drinfeld modules which will enable us to prove certain Mordell-Weil type structure theorems for Drinfeld modules.

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014